Search results for "optics [X-ray]"

showing 10 items of 981 documents

Noise-Assisted Crystallization of Opal Films

2012

International audience; An improvement of the crystal quality of opal fi lms self-assembled from polymer spheres in a moving meniscus using the agitation by white noise acoustic vibrations is demonstrated. A tenfold higher ordering of a hexagonal sphere packing in the (111) plane is achieved. This crystallization method, the mechanism of which is described in terms of the stochastic resonance, is a contrast to the widely used approach based on maintaining equilibrium conditions during the crystallization process. The precise quantifi cation of the incremental lattice order improvement as a function of acoustic noise intensity is achieved by calculating the probability of finding an opposite…

DiffractionMaterials scienceRotational symmetry02 engineering and technology01 natural scienceslaw.inventionBiomaterialssymbols.namesakeOpticslawLattice (order)0103 physical sciencesElectrochemistry[CHIM.CRIS]Chemical Sciences/CristallographyCrystallization010306 general physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Condensed matter physicsbusiness.industryWhite noise021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsNoiseSphere packingFourier transformsymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusiness
researchProduct

Experimental observation of temporal dispersion gratings in fiber optics

2017

We experimentally demonstrate a temporal analog to the diffraction optical grating in the Fraunhofer formalism. Using amplitude and phase temporal periodic modulations, we show that the accumulation of dispersion in fiber optics induces the development of temporally well-separated sidebands similar to the spatial orders of diffraction that are commonly observed in an optical grating operating in the far field.

DiffractionOptical fibergenetic structuresPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 optics020210 optoelectronics & photonicsOpticsFiber Bragg gratinglaw0103 physical sciencesBlazed grating0202 electrical engineering electronic engineering information engineeringDispersion-shifted fiberDiffraction gratingPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryStatistical and Nonlinear PhysicsPhysical opticsAtomic and Molecular Physics and Opticseye diseasesOptoelectronicssense organsbusinessFresnel diffraction
researchProduct

Devil’s vortex-lenses

2009

In this paper we present a new kind of vortex lenses in which the radial phase distribution is characterized by the "devil's staircase" function. The focusing properties of these fractal DOEs coined Devil's vortex-lenses are analytically studied and the influence of the topological charge is investigated. It is shown that under monochromatic illumination a vortex devil's lens give rise a focal volume containing a delimited chain of vortices that are axially distributed according to the self-similarity of the lens.

DiffractionOptics and PhotonicsLightOptical TweezersAstrophysics::Cosmology and Extragalactic Astrophysicslaw.inventionFractalOpticslawCondensed Matter::SuperconductivityTopological quantum numberPhysicsModels Statisticalbusiness.industryEquipment DesignModels TheoreticalAtomic and Molecular Physics and OpticsVortexLens (optics)FractalsClassical mechanicsMonochromatic colorAxial symmetrybusinessOptical vortexAlgorithmsOptics Express
researchProduct

Silencing and enhancement of second-harmonic generation in optical gap antennas

2012

International audience; Amplifying local electromagnetic fields by engineering optical interactions between individual constituents of an optical antenna is considered fundamental for efficient nonlinear wavelength conversion in nanometer-scale devices. In contrast to this general statement we show that high field enhancement does not necessarily lead to an optimized nonlinear activity. In particular, we demonstrate that second-harmonic responses generated at strongly interacting optical gap antennas can be significantly suppressed. Numerical simulations are confirming silencing of second-harmonic in these coupled systems despite the existence of local field amplification. We then propose a…

Electromagnetic fieldOptics and PhotonicsSurface PropertiesMetal NanoparticlesElectrons02 engineering and technology01 natural sciencesSignalOpticsElectromagnetic Fields0103 physical sciencesMaterials TestingNanotechnologyScattering RadiationComputer SimulationSurface plasmon resonance[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsLocal fieldPlasmonPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryElectromagnetic RadiationSecond-harmonic generationEquipment DesignModels Theoretical021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsFinite element methodNonlinear systemMicroscopy Electron ScanningOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsGold0210 nano-technologybusiness
researchProduct

Suppression of radiative losses of surface polaritons on nanostructured thin metal films

2005

The strong electromagnetic coupling between surface plasmon polariton modes on opposite interfaces of a finite thickness periodically nanostructured metal film has been studied. Surface polariton dispersion and associated electromagnetic field distributions have been analyzed. It was shown that at a frequency that corresponds to the crossing of film Bloch modes of different symmetries, the radiative losses of surface polaritons that are related to the polaritons' coupling to light during propagation on the structured surface are suppressed.

Electromagnetic field[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials sciencePhysics::Optics01 natural sciencesElectromagnetic radiation010309 opticsOptics0103 physical sciencesDispersion (optics)Radiative transferPolariton010306 general physicsComputingMilieux_MISCELLANEOUSCondensed Matter::Quantum Gases[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Condensed matter physicsCondensed Matter::Otherbusiness.industrySurface plasmonSurface plasmon polaritonAtomic and Molecular Physics and OpticsOCIS codes: 240.6680 240.0310Surface wavebusiness
researchProduct

Optical Dark Rogue Wave

2016

AbstractPhotonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena and lead to novel space-time analogies, for example with multi-parti…

Event horizonWave propagationPhysics::Opticshawking radiation01 natural sciencesArticleblack-holes010305 fluids & plasmasGravitationGeneral Relativity and Quantum Cosmology[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]0103 physical sciencesRogue wave010306 general physicsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Bose-Einstein condensateMultidisciplinaryBirefringenceMulti-mode optical fiberbusiness.industryPolarization (waves)Quantum electrodynamicsBose-Einstein condensate; hawking radiation; black-holesBose-Einstein condensate;Hawking radiation; black-holes; analog; gravity; horizon; fibers; laserPhotonicsTelecommunicationsbusinessScientific Reports
researchProduct

Gain, detuning, and radiation patterns of nanoparticle optical antennas

2008

International audience; For their capability to localize and redirect electromagnetic field, metal nanoparticles have been recently viewed as efficient nanoantenna operating in the optical regime. In this article, we experimentally investigated the optical responses of coupled gold antenna pairs and measured the critical parameters defining antenna characteristics: resonant frequencies and bandwidths, detuning and gains, and radiation patterns.

FAR-FIELDElectromagnetic fieldPLASMONIC NANOPARTICLEPhysics::OpticsNanoparticle02 engineering and technologySILVER NANOPARTICLESRadiation01 natural sciencesNANOANTENNASOptics[ PHYS.COND.CM-MSQHE ] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]0103 physical sciencesSCATTERING[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsMetal nanoparticles[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryRESONANCE021001 nanoscience & nanotechnologyCondensed Matter PhysicsDIMERSElectronic Optical and Magnetic MaterialsSINGLE[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicQuasiparticleOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicAntenna (radio)EMISSION0210 nano-technologybusinessNEAR-FIELDPhysical Review B
researchProduct

Visualizing coherent molecular rotation in a gaseous medium

2021

Inducing and controlling the ultrafast molecular rotational dynamics using shaped laser fields is essential in numerous applications. Several approaches exist that allow following the coherent molecular motion in real-time, including Coulomb explosion-based techniques and recovering molecular orientation from the angular distribution of high harmonics. We theoretically consider a non-intrusive optical scheme for visualizing the rotational dynamics in an anisotropic molecular gas. The proposed method allows determining the instantaneous orientation of the principal optical axes of the gas. The method is based on probing the sample using ultra-short circularly polarized laser pulses and recor…

FOS: Physical sciences01 natural sciences7. Clean energyWaveplatelaw.invention010309 opticslawPhysics - Chemical PhysicsOrientation (geometry)0103 physical sciences010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]Chemical Physics (physics.chem-ph)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Coulomb explosionLaserPulse (physics)Computational physicsVortexHarmonics[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Ultrashort pulsePhysics - OpticsOptics (physics.optics)
researchProduct

Optical Imaging of Coherent Molecular Rotors

2020

International audience; Short laser pulses are widely used for controlling molecular rotational degrees of freedom and inducing molecular alignment, orientation, unidirectional rotation and other types of coherent rotational motion. To follow the ultra-fast rotational dynamics in real time, several techniques for producing molecular movies have been proposed based on the Coulomb explosion of rotating molecules, or recovering molecular orientation from the angular distribution of high-harmonics. The present work offers and demonstrates a novel non-destructive optical method for direct visualization and recording of movies of coherent rotational dynamics in a molecular gas. The technique is b…

FOS: Physical sciences02 engineering and technology01 natural scienceslaw.invention010309 opticsMolecular dynamicsOpticslaw0103 physical sciencesPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Linear polarizationbusiness.industryCoulomb explosionRotation around a fixed axisPolarizer021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserPolarization (waves)Atomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials0210 nano-technologybusinessUltrashort pulseOptics (physics.optics)Physics - OpticsLaser & Photonics Reviews
researchProduct

The temporal analogue of diffractive couplers

2020

International audience; Based on the space-time duality of light, we numerically demonstrate that temporal dispersion grating couplers can generate from a single pulse an array of replicas of equal amplitude. The phase-only profile of the temporal grating is optimized by a genetic algorithm that takes into account the optoelectronic bandwidth limitations of the setup.

FOS: Physical sciencesDuality (optimization)Physics::Optics02 engineering and technologyGrating01 natural sciences010309 optics020210 optoelectronics & photonicsOptics0103 physical sciencesDispersion (optics)Genetic algorithm0202 electrical engineering electronic engineering information engineeringUltrafast processingPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryBandwidth (signal processing)Single pulseGeneral MedicineQC350-467Optics. LightAmplitudePhase modulationSpace-time analogybusinessOptics (physics.optics)Physics - Optics
researchProduct